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We point out that in a Brownian dynamics simulation it is justified to use arbitrary
distribution functions of random numbers if the moments exhibit the correct limiting
behavior prescribed by the Fokker-Planck equation. Our argument is supported by a
simple analytical consideration and some numerical examples: We simulate the Wiener
process, the Ornstein—-Uhlenbeck process and the diffusion in a #* potential, using both
Gaussian and uniform random numbers. In these examples, the rate of convergence of
the mean first exit time is found to be nearly identical for both types of random numbers.

Keywords: Brownian Dynamics; Numerical Simulation; Random Numbers; Langevin
Equations; Stochastic Processes.

1. Introduction

In many branches of physics, and other sciences, the dynamical behavior of various
model systems is described by a Markov process continuous in time. Very frequently,
processes of the Fokker—Planck type are considered.!’? A convenient method to solve
a Fokker-Planck equation is the numerical Brownian dynamics simulation. In this
method, one exploits the equivalence of the Fokker-Planck equation to a stochastic
differential equation, the Langevin equation. In a discretized approximation with
finite timestep h, the appearing noise term can be simulated by random numbers.
The method then can be viewed as the generation of an ensemble of stochastic tra-
Jectories (“paths”). By averaging over these paths, one obtains information about
single-time statistical averages (A(t)) as well as multi-time correlation functions
(A@)B(t')), (A(t)B(t')C(")), ... .

In this note we consider the choice of the distribution function of the ran-
dom numbers used in a Brownian dynamics simulation. Most simulations up to
now have been using normally distributed random numbers. In a recent paper,
Greiner, Strittmatter and Honerkamp®4 described various discretization schemes
for stochastic differential equations and discussed the involved discretization error.
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818 Brownian Dynamics Simulations

They pointed out that in the case of the simple Euler algorithm the order of the dis-
cretization error of quantities of the type (A(t)) remains unchanged if one replaces
the Gaussian distribution function by some other distribution function having the
same mean and variance and finite higher moments. So, one can use the computa-
tionally less expensive uniformly distributed random numbers to calculate (A(t)).
However, it was not noticed there that every statistical property, including corre-
lation functions and mean first exit times, is still correctly simulated in the limit
h — 0 after the above mentioned replacement. This is, however, a direct conse-
quence of the very definition of a Fokker-Planck process, as will become clear in the
following sections. At least according to our knowledge of the pertaining literature,
most authors who have applied the method seem to be unaware of this fact. Our
communication, therefore, hopes to demonstrate to the practitioner in the field that
the use of simpler random number distributions is a safe procedure which, in many
cases, can save a significant amount of computer time.

In Sec. 2, we formulate the Langevin equation and its corresponding Fokker—
Planck equation. From this we heuristically derive the standard Euler algorithm
with the usual Gaussian distribution. The derivation is basically the historical rea-
son for the widespread use of Gaussian random numbers. In Sec. 3, we introduce
a broad class of distribution functions which can all be used in a numerical sim-
ulation. By a straightforward analytical consideration (which is not meant as a
rigorous proof) we show weak convergence of the probability distribution of sets of
paths, i.e., loosely spoken, in the limit A — 0 the simulated probability to “choose”
a path is the correct one. This means that all statistical properties are reproduced
correctly in that limit, which is quite obvious since all statistical averages (single—
time and multi-time) can be represented as a path integral. We think that this
kind of approach is most natural and appropriate for the discussion of algorithms
for the numerical integration of stochastic differential equations. Finally, in Sec. 4,
we present numerical results for mean first exit time problems in simulations of
the Wiener process (simple diffusion), the Ornstein-Uhlenbeck process (Brownian
particle subject to a harmonic force) and the diffusion over a barrier in a Ginzburg-
Landau type potential, using both Gaussian and uniform random numbers. In
accordance with Strittmatter®® we observe a v/h convergence behavior of the mean
first exit time, a quantity which is very sensitive to the trajectories themselves.

2. The Fokker-Planck Process and the Standard Euler Algorithm

Our starting point is the stochastic differential equation

z = f(z, t)+ o(z, t) n(t). (2.1)

f describes the deterministic drift, o the diffusion. 9(t) is a stochastic force with
the properties

{(n(t)) =0, (2.2)
(n(t)n(t)) = 26(t - '), (2.3)
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(n(tl)"(t2) e n(t2ﬂ)) =2" Z 6(t51 =t ... 6(tl'2n-1 - ti?n) (24)
P

and
(n(t)n(t2) - .. n(tan41)) = 0. (2.5)

In (2.4), the sum has to be performed over all permutations that lead to different
expressions for 8(t;, — t;,)...8(ti,,_, —~ ti;.) (see e.g. Ref. 1). We choose the It6
interpretation of (2.1).

For convenience of notation, we restrict the discussion to one—dimensional
processes. The generalization to several dynamical variables is straightforward.

The Markov process may alternatively be described by the conditional prob-
ability density P(z, t|zo, to). P(z, t|zq, tg) dz is the probability for the random
variable = having at time ¢ a value in an interval of length dz under the condition
that z had the value zy at time ¢y. Obviously,

P(z, tolzo, to) = 8(z — z0) . (2.6)

The probability density W (z, t) for the stochastic variable having the value z at
time ¢ can then be written as

Wz, t) = / P(z, t|zq, to)W (z0,%0) dzo . 2.9

By the standard Kramers-Moyal expansion!? it can be shown that P satisfies the
following equation of motion:

o _ A
B?P(z, t|zo, to) = '?:1 (—a) (D(")(:c, t)P(z, t|zo, to)) , (2.8)
where D(") is given by

1. 1
D™(z, t) = 5 lim = (=t + 1) = ' (O)) lo=s
, (2.9)
= im > [ =2y P, e, 1) de'

Equations (2.8), (2.9) hold for an arbitrary Markov process. The properties (2.4),
(2.5) of the noise ensure that in our case, the Fokker-Planck process, D(") vanishes
for n > 2. For the drift and diffusion coefficients D(*) and D) one obtains in the
It6 interpretation! 2

DNz, t) = f(=, 1), (2.10)
D®)(z, 1) = o(z, 1)*. (2.11)

By (2.7) one immediately sees that W(z, t) also obeys the Fokker—Planck equation.
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A simulation is performed if an exact analytical solution is unknown. However,
one may derive an approximate solution valid for short times. Assuming that drift
and diffusion coefficients D) and D(® are continuous functions of z and ¢, one
may make use of the continuity of the trajectories and replace DY) and D by
constants. The approximate Fokker-Planck equation, valid for small ¢ — ¢g, then
becomes

%P(z, tlzg, to) = —D(l)(zo, to)aiP(z, t|zo, to)
;2 (2.12)
+ D®)(z,, to)a—z-P(z, t|zo, to)

with the standard initial condition (2.6). As (2.12) is linear, it can be easily solved
to yield the so—called “short-time propagator”

PS(I) tlz()a tD) =

[47rD(2)(:co, to)(t — to)] mi exp ( -

(z —‘:co — DM (zy, to)(t — to))? (2.13)
4D(2)(2o, to)(t - to) ) !

which is a Gaussian distribution. The corresponding Euler algorithm with timestep
h then consists of the following recipe: If o = z(to) already has been generated,
then generate £ = z(to + k) according to the distribution (2.13):

z(to + h) = z(to) + f(zo, to)h + (20, to)V2h r, (2.14)

where r is a Gaussian random variable with zero mean and unit variance. f and o
are the drift and diffusion terms of the Langevin equation (¢f. Egs. (2.10), (2.11)).
The random variable v/2h r corresponds to foh n(t) dt in the Langevin equation.

3. Use of Arbitrary Distributions

It is known that short-time propagators of the Fokker—Planck equation are not
unique in general.”® Indeed, the formula (2.9) suggests that any short-time propa-
gator (i.e., algorithm) should be correct in the limit » — 0 that has the property

1 1, oy 1. 1 o
~lim = (A2)?) = — lim © /(:c — 0)" Ps(2, to + hlzo, to) dx = D™(z0, to)
(3.1)

for all n. Later, we will give an argument that this is correct. The propagator
(2.13), however, is not the only function that satisfies (3.1). A straightforward
generalization can, e.g. be done by a scaling ansatz. Suppose an arbitrary function
F > 0 be given having the properties

/_:F(z)dx=1, [:zF(z)dz=0, /_o:ozzF(z)da;:l, (32)

all higher moments existing. F can be, e.g. a Gaussian, a uniform distribution, a
sum of two delta functions peaked at £1, etc. One then easily verifies that (3.1) as
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well as the initial condition (2.6) holds for

1 T—xo— D(l)(zo’ to)h)
A () = F ) 3.3
Pg(z, to + h|zy, to) \/QD(Z)(:EO, to)h ( \/§D(2)(zo, to)h (3.3)

The actual calculation is performed in Appendix A. From now on, the term
“arbitrary distribution function” shall denote a short-time propagator normalized
to unity that satisfies the initial condition (2.6) and the relations (3.1).

An intuitive argument why only the first two moments of the short-time prop-
agator enter can be found in the classical paper by Chandrasekhar.® Describing
the stochastic force by the physical picture of a large Brownian particle colliding
stochastically with small surrounding particles, one must view foh n(h) dt as the
(additive) result of a large number of collisions, even for arbitrarily small h. (If one
reaches a time scale where this is physically no longer valid, the Markov description
of the dynamics is no longer correct.) Though the single collision has an unknown
distribution, foh 7(t) dt must be a Gaussian random variable because of the Central
Limit Theorem. In this limiting distribution only the first and second moment
survive. By simply reverting this argument, it is obvious why one is allowed to
choose an arbitrary short-time propagator: As the deterministic displacement scales
as h, but the stochastic displacement as vk, the latter dominates in the limit of
small timesteps. If h is sufficiently small, then lots of stochastic displacements have
occurred before a significant deterministic drift has happened. So, on the time scale
of the deterministic drift the distribution of the stochastic displacements may be
regarded as Gaussian anyway.

We now want to give a more formal argument why every simulated short-time
propagator satisfying (3.1) indeed yields the correct distribution of trajectories in
the limit A — 0. To this end, we consider the ensemble of paths starting at time
t =0 at z = 0 and ending somewhere at timet = 7= Nh. Fort=nh,n=1,2,...
we choose intervals I,, (which can be very small). By requiring z(nh) € I, we select
a subset out of the set of all paths. The true probability measure of this subset is

Wt(h)-—-/ d::N/ dzn_1... dz,
In In-; I (3.4)

P‘(:L‘N, Nhl-"f'N—I; (N - l)h) .. .Pt(.’tl, hIO, 0) y

where P* stands for the true solution of the Fokker-Planck equation. Likewise, the
simulated probability measure of this subset of paths is W*(h), where P* has been
replaced by the approximation short-time propagator P* of the simulation. The
method converges if for arbitrary choice of the I,

lim |W* (k) = W*(h)] = 0. (3.5)
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By adding N — 1 zeros and using the triangle inequality, we have
[W?(h) — W'(h)| <

dzN.../ o PyPy_,... P}|P} — P!+
In I

dzy / dz Py P}_,...P{|P} — P}|P} +... (36)
In I,
/ dzN.../ dz\|P4 — PY\Py_y... P},
IN I
where the abbreviation
P, := P(zy, nhlzp_1, (n — 1)h) 3.7

has been introduced. The Fourier representation of P, is written as
1 [ ~
P(zy, nh|z,_y, (n—1)h) = 5;/ dk exp(—ik(zn —zn-1))P(k; zn-1, k). (3.8)
-0

The moments of P, are related to the Taylor coeflicients of P:

. > (ik)¥
P(k; 2,1, h) = ;} o oy (Tn_1, h) (39)
with
o0
po(zn-1, h) = / dz,(zn — zp—1)" P(zn, nh|za_1, (n — 1)h). (3.10)
-0
Hence,
s Y : — (ik)" , ,
P:-P: = 2 /_oo dk exp(—ik(zn — n-1)) Z —%(p, —ul). (3.11)

v=0

Because of the premise (3.1), 2 — ! vanishes faster than linearly as b — 0,
us — ut = o(h). Hence, P: — P} = o(h). On the other hand, the number of terms
appearing in (3.6) is N = 7/h. Therefore, (3.1) indeed assures convergence.

4. Numerical Results

In order to check the influence of the details of the distribution function on the
convergence behavior, we performed Brownian dynamics simulations on three simple
systems, the Wiener process

aP 18%P
o =P =g

- (4.1)
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the Ornstein—Uhlenbeck process

apP 0 162
E = LFP(I)P = (az + Ew)P, (4.2)

and a “Ginzburg-Landau” process

2
68—1: = Lpp(z)P = (56;(::3—:0)+D%> P, (4.3)
where we use D = 0.1 in our simulation.

For these processes we calculated mean first exit times. These are defined as
follows: Suppose that the stochastic variable z has a starting value z = z¢ at time
t = 0, and that an interval [ is given around z¢. For a given trajectory, the first
exit time is the time that passes until z for the first time has a value not in I. The
mean first exit time T'(z) then results from averaging over all trajectories.

The Wiener and the Ornstein~Uhlenbeck processes were studied using the Euler
algorithm and five different timesteps (h = 0.0005, 0.001, 0.005, 0.01, 0.05) and
both Gaussian and uniform random numbers. We generated 10° trajectories for
each system, timestep and type of random numbers, and calculated the mean first
exit time for the escape beyond |z| = 1 starting at £ = 0. In the case of the
Ginzburg-Landau double well potential we asked for the escape time out of one
of the symmetric minima at £ = +1 over the barrier at z = 0. We again used
the Euler algorithm and six timesteps (same as before, additionally h = 0.0025)
and generated 5 - 10° paths for both types of random numbers. The simulations
were run on the Cray at the HLRZ Julich using a fully vectorized program. Even
for the most complicated case, the Ginzburg-Landau process, the simulation using
Gaussian random numbers (Box~Muller algorithm!®) needed about four times as
much CPU time as the program that used uniform ones.

In order to compare our results with exact values, we make use of the fact that
the mean first exit time 7'(z) for the escape out of an interval [a, b] obeys the
differential equation’:?

LLpT(z)+1=0 (4.4)

with the boundary conditions
T(a)=T()=0 (4.5)

for the case of absorbing boundaries (Wiener process and Ornstein-Uhlenbeck pro-
cess) and

T(0) =0, %T(z) 2200 (4.6)

for an absorbing boundary at £ = 0 and a reflecting one at £ = —oo (Ginzburg-
Landau process).
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In (4.4), L;, p denotes the adjoint operator of the Fokker-Planck operator which
is

162
in the case of the Wiener process,
8 18
| I T .
Lep = *5z T 252 (48)
for the ornstein—Uhlenbeck process and
8 0?
| I SR W — .
LI"'P—(z Z)az+Dax2 (49)

for the Ginzburg-Landau process.

For the Wiener process, one trivially obtains T'(z) = 1 — 2% and T(0) = 1.
For the Ornstein—Uhlenbeck process, we solved (4.4), (4.5) numerically by a power
series ansatz on a pocket calculator to obtain T'(0) = 1.44525. In the case of the
Ginzburg-Landau process the exact value for T'(~1) can be obtained by a Romberg
integration®$ of the double integral representation of T'(z)*? or by a numerical
integration of (4.4, 4.6) using a shooting procedure. For D = 0.1 both methods
yield a value of T(—1) = 30.82.

The discretization error of T should (in leading order) be proportional to v.4~¢
Furthermore, the data are subject to a statistical error due to the finite sample size.
In the cases of the Wiener and Ornstein—Uhlenbeck process we estimated the error

by
o(ry= YLD D)
vN vN’

where (T) is the simulation result for the mean first exit time and N is the num-
ber of generated paths. In the case of the Ginzburg-Landau process we explicitly
sampled o(T). The extrapolation to timestep h = 0 was done by fitting a linear
behavior in v/ to the data.l% In two cases (Ginzburg-Landau with uniform ran-
dom numbers, Ornstein~Uhlenbeck with Gaussian random numbers) we used all
data points, whereas we omitted the largest time step in all other cases since the
quality of the fit!® decreased significantly if the data point was included. We as-
cribe this behavior to a O(h)—contribution. Table 1 gives our results, including the
error of the extrapolated value calculated by the regression routine (one standard
deviation). The raw data and the fitted straight lines are presented in Figs. 1-3.

(4.10)

Table 1. Results for mean first exit times.

Process exact uniform Gauss
Wiener 1 0.999 % 0.001 0.997 + 0.001
Ornstein—Uhlenbeck 1.445 1.444 £ 0.002 1.444 + 0.001
Ginzburg-Landau 30.82 30.85 +£ 0.03  30.85 + 0.04
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Fig. 1. This mean first exit time as a function of the square root of the discretization timestep for
the Wiener process. Octagons denote Gaussian random numbers and triangles uniform ones. In
all cases the symbol size exceeds the statistical error of the data. The straight lines are regression
fits (see text).
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Fig. 2. Same as Fig. 1 for the Ornstein—Uhlenbeck process.
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Fig. 3. Same as Fig. 1 for the Ginzburg-Landau process.
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Appendix A
In order to check that (3.3) satisfies (3.1) we have to compute the integrals

1 F(.’L‘ — 29 — D(l)(zo, to)h
\/2D(2)(a:o, to)h \/2D(2)(20, to)h

to low orders of the timestep h. By the abbreviations

a = \/ 2D(2)(2o, to) (A2)

I, = /_0;(:: —zo)" ) dz (A1)

and W
p o= D020, t0) (A.3)
a
one has = ( "
r—Xg r—2Zo
I, = F - b\/l_z) dz. A4
" ./—oo a\/l—z ( a\/l_z ’ ( )
Substituting
T —Tp
= -k A5
y i (A.5)

and expanding

(z = 2o)"* = (aVh)"(y + bVE)? = (aVh)? z"j (:) (bVh)Eyn* (A.6)
=0

we find
00

n

In=a"h"?)" (") bE /2 / vy F(y) dy. (A7)

k -0
k=0

We now use the properties (3.2) required for the function F. For n = 0, one obtains

I, = 1. That means that the short-time propagator is correctly normalized. For

n =1, only k = 1 contributes: I; = abh. Hence,

. I
lim Fl =ab = DW(zo, t,). (A8)

For n = 2, only k = 0 and k = 2 contribute: I; = a?h(1 + bh), and

Iz (12

=2

m

lim 2 = 2 = DP(aq, to). (A9)

DO =

For n > 3,I, = O(h™/?), and hence

=0. (A.10)



